均方根误差最小准则的偏最小二乘筛选中药药效物质方法
作者:
作者单位:

(1.江西中医药大学 南昌 330004;2.江西省中医人工智能重点研究室 南昌 330004)

作者简介:

聂斌,教授,发表论文50余篇;通信作者:杜建强,教授。

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(项目编号:82260849);江西中医药大学校级科技创新团队发展计划项目(项目编号:CXTD22015)。


A Partial Least Squares Screening Method for Pharmacological Substances of Traditional Chinese Medicine Based on the Criterion of Minimum Root Mean Square Error
Author:
Affiliation:

(1.Jiangxi University of Chinese Medicine, Nanchang 330004, China;2.Jiangxi Provincial Key Laboratory of Chinese Medicine Artificial Intelligence, Nanchang 330004, China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 研究一种均方根误差最小准则的偏最小二乘筛选中药药效物质方法,以便全面地观察和分析中药的作用机理。方法/过程 以均方根误差(root mean square error,RMSE)最小为主要准则,通过偏最小二乘法获得特征的变量投影重要性指标(variable importance in the projection,VIP)值,再以VIP值的大小对特征重要性排序,最后通过偏最小回归法与前向搜索法,以RMSE最小、交叉性验证结果最好为标准,确定特征子集。采用大承气汤配比治疗急性胰腺炎实验数据,以及麻杏石甘汤治咳、平喘、退热实验数据进行验证。结果/结论 该方法能得到回归性能最好时的最小RMSE和药效物质子集。VIP值大于1的特征是相对重要的,VIP值小于1的特征也可能对模型性能有影响。

    Abstract:

    Purpose/SignificanceTo study a partial least squares (PLS) screening method for traditional Chinese medicine (TCM) pharmacological substances based on the minimum root mean square error (RMSE) criterion,in order to observe and analyze the action mechanism of traditional Chinese medicine comprehensively. Method/Process The main objective is to obtain the variable importance in the projection (VIP) values of features using the PLS method with the minimum RMSE as the main criteria. Then the importance of features is ranked based on the VIP values. Finally, by using PLS regression and forward search methods, the feature subset is determined based on the criteria of the minimum RMSE and obtaining the best cross validation results. Experimental data on the treatment of acute pancreatitis with the combination of DaChengQi Tang and MaXingShiGan Tang for cough, asthma, and fever are verified. Result/Conclusion This method can obtain the minimum residual and subset of pharmacological substances with the best regression performance. Features with a VIP value greater than 1 are relatively important, and features with a VIP value less than 1 may also have an impact on the model performance.

    参考文献
    相似文献
    引证文献
引用本文

聂斌,杜建强,余日跃,等.均方根误差最小准则的偏最小二乘筛选中药药效物质方法[J].医学信息学杂志,2024,45(12):29-36

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2024-07-28
  • 录用日期:
  • 在线发布日期: 2025-01-10
  • 出版日期:

扫码关注

官方微信