基于大语言模型的病历生成智能体研究与设计
作者:
作者单位:

(江门市中心医院网络信息科 江门 529000)

作者简介:

陈宇聪,工程师,发表论文11篇;通信作者:谭伟锋,正高级工程师,硕士生导师。

通讯作者:

中图分类号:

R-058

基金项目:

广东省卫生经济学会科研课题(项目编号:2024-WJMZ-48);江门市医疗卫生科技计划项目(项目编号:2025YL01040)。


Research and Design of an Agent for Medical Record Generation Based on Large Language Model
Author:
Affiliation:

(Department of Network Information, Jiangmen Central Hospital, Jiangmen 529000, China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 构建以大语言模型为核心的病历生成智能体,以减轻临床病历书写压力。方法/过程 通过数据预处理、大语言模型模拟对话生成,为模型微调储备数据,基于病历书写规范建立病历生成规则库,以模型微调训练专业病历生成模型,并结合知识检索、提示词工程、工作流设计等技术,进而搭建病历生成智能体。结果/结论 该智能体生成的电子病历符合相关规范和医疗质量控制要求,为智能病历生成的应用和发展提供了经验参考和实证支持。

    Abstract:

    Purpose/Significance To build an agent for medical record generation with large language model (LLM) as the core, so as to alleviate the burden of clinical medical record writing. Method/Process Data for model fine-tuning are prepared through data preprocessing and large language model simulated dialogues generating. A medical record generation rule library is established based on medical record writing standards. A specialized medical record generation model is trained through model fine-tuning, combining technologies such as knowledge retrieval, prompt engineering, and workflow design, and then a medical record generation agent is built. Result/Conclusion The electronic medical records(EMR) generated by the agent have a higher accuracy rate and are in line with the norms of EMR and the requirements of medical quality control, providing empirical references and support for the application and development of intelligent medical record generation.

    参考文献
    相似文献
    引证文献
引用本文

陈宇聪,谭伟锋,戎伟鑫,等.基于大语言模型的病历生成智能体研究与设计[J].医学信息学杂志,2025,46(11):14-19, 41

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2025-10-14
  • 录用日期:
  • 在线发布日期: 2025-12-15
  • 出版日期:

扫码关注

官方微信