基于BERT模型的社区慢性病患者服务体验分析
作者:
作者单位:

(1.汕头大学医学院附属粤北人民医院 韶关 512026;2.汕头大学医学院 汕头 515000;3.海南医科大学公共卫生学院 海口 571199)

作者简介:

徐若昕,硕士研究生,发表论文1篇;

通讯作者:

中图分类号:

R-058

基金项目:

国家自然科学基金青年项目(项目编号:72204153);广东省卫生经济学会科研课题(项目编号:2024-WJMF-68);韶关市社会发展科技协同创新体系建设项目(项目编号:230330118034783)。


Analysis of Service Experience for Community Chronic Disease Patients Based on the BERT Model
Author:
Affiliation:

(1.The Affiliated Yuebei People〖DK〗’s Hospital, Shantou University Medical College, Shaoguan 512026, China;2.Shantou University Medical College, Shantou 515000, China;3.School of Public Health, Hainan Medical University, Haikou 571199, China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 挖掘慢性病患者诊疗体验深层信息,为优化分级诊疗政策提供参考。方法/过程 收集广东省和重庆市4家医院539例慢性病患者访谈文本,基于BERT-base-Chinese模型进行主题识别和情感分析。结果/结论 共分析4 234组问答对,识别出11个主题类别。其中医疗服务与机构相关主题占比最高(37.72%),其次为就诊流程(27.23%)和健康教育(10.75%)。情感分析显示,“医护人员”和“挂号”等主题情感积极,“转诊”与“经济负担”等主题情感消极。机器学习方法能有效识别慢性病服务中的短板。

    Abstract:

    Purpose/Significance To mine the deep information of the diagnosis and treatment experience of patients with chronic diseases, and to provide references for optimizing the hierarchical diagnosis and treatment policy. Method/Process The interview texts of 539 patients with chronic diseases from 4 hospitals in Guangdong province and Chongqing are collected. Topic identification and sentiment analysis are conducted based on the BERT-base-Chinese model. Result/Conclusion A total of 4 234 question-answer pairs are analyzed, from which 11 topic categories are identified. Topics related to medical services and institutions account for the highest proportion (37.72%), followed by the appointment and treatment process (27.23%) and health education (10.75%). Sentiment analysis reveals that positive emotions toward topics such as “medical staff” and “appointment registration,” while “referral” and “financial burden” elicits negative sentiments. Machine learning methods can effectively identify the shortcomings in chronic disease services.

    参考文献
    相似文献
    引证文献
引用本文

徐若昕,杨婷婷,江宽列,等.基于BERT模型的社区慢性病患者服务体验分析[J].医学信息学杂志,2025,46(11):35-41

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2025-10-29
  • 录用日期:
  • 在线发布日期: 2025-12-15
  • 出版日期:

扫码关注

官方微信