基于机器学习的护士职业倦怠风险预测模型
作者:
作者单位:

(1.大连大学护理学院 大连116001;2.大连市第七人民医院护理部 大连116023)

作者简介:

高铭阳,硕士研究生;通信作者:吴玉兰,副主任护师。

通讯作者:

中图分类号:

R-058

基金项目:


A Risk Prediction Model for Nurse Burnout Based on Machine Learning
Author:
Affiliation:

(1.School of Nursing,Dalian University, Dalian 116001,China;2.Nursing Department,Dalian Seventh People〖DK〗’s Hospital, Dalian 116023,China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 构建我国三级医院护士职业倦怠风险预测模型,探索最优算法。方法/过程 采用问卷调查法,面向辽宁省三级医院护士,采集23项风险因素数据,并通过哥本哈根职业倦怠量表评估其职业倦怠情况。运用随机森林、极度随机树、梯度提升决策树、极端梯度提升树、K近邻、支持向量机和逻辑回归7种单一算法,以及堆叠泛化集成模型策略,构建风险预测模型,以AUC、准确率、特异度等指标评估模型性能。结果/结论 单一模型中逻辑回归表现最佳,集成模型中随机森林与逻辑回归融合的模型表现最佳。该集成模型可作为护士职业倦怠筛查的高效工具。

    Abstract:

    Purpose/Significance To construct a risk prediction model for job burnout among nurses in tertiary hospitals in China, and to explore the optimal algorithm. Method/Process By using the questionnaire survey method, 23 risk factor data are collected from nurses in tertiary hospitals in Liaoning province, and their job burnout status is evaluated through the Copenhagen burnout inventory. Seven single algorithms, namely random forest, extra-trees, gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), K-nearest neighbors (KNN), support vector machine (SVM), and logistic regression, and a stacking ensemble model strategy are used to construct risk prediction models. Model performance is evaluated using indicators such as AUC, accuracy, and specificity.Result/Conclusion Among the single models, logistic regression performs the best. Among the stacking ensemble models, the model integrating random forest and logistic regression is the optimal one. The ensemble model can serve as an efficient tool for the screening of nurses’ job burnout.

    参考文献
    相似文献
    引证文献
引用本文

高铭阳,袁晓彤,吴玉兰,等.基于机器学习的护士职业倦怠风险预测模型[J].医学信息学杂志,2025,46(11):50-57

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2025-09-29
  • 录用日期:
  • 在线发布日期: 2025-12-15
  • 出版日期:

扫码关注

官方微信