基于机器学习的乳腺癌氧化应激预后模型及肿瘤微环境分析
作者:
作者单位:

(1.桂林医科大学广西环境暴露组学与全生命周期健康重点实验室 桂林 541199;2.桂林医科大学公共卫生学院 桂林 541199;3.桂林医科大学第一附属医院 桂林 541001;4.广西数字医学临床转化工程研究中心 桂林 541001)

作者简介:

陈晓龙,硕士研究生;通信作者:刘慧,副教授。

通讯作者:

中图分类号:

R-058

基金项目:

广西自然科学基金项目(项目编号:2022GXNSFBA035659);广西自然科学基金项目(项目编号:2023GXNSF AA026322)。


Oxidative Stress Prognostic Model for Breast Cancer and Tumor Microenvironment Analysis Based on Machine Learning
Author:
Affiliation:

(1.Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, China; 2.School of Public Health, Guilin Medical University, Guilin 541199, China; 3.The First Affiliated Hospital of Guilin Medical University, Guilin 541001, China; 4.Guangxi Engineering Research Center for Digital Medicine and Clinical Transformation, Guilin 541001, China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 探讨氧化应激相关基因在乳腺癌预后与肿瘤微环境中的作用,构建可辅助预后评估与个体化治疗的预测模型。方法/过程 基于氧化应激基因集,采用机器学习集成算法筛选最优预后模型,并在独立验证集中验证。结合生存分析与多因素Cox回归建立综合预测模型,并利用GSEA、scRNA-seq及肿瘤微环境分析,比较高、低风险组的通路富集、免疫浸润及免疫治疗反应差异。结果/结论 构建包含14个基因的预后模型,高风险组患者总生存期显著缩短。融合风险评分与临床特征的列线图预测性能良好。该模型具备良好预测能力与临床转化潜力。

    Abstract:

    Purpose/Significance To investigate the role of oxidative stress-related genes in breast cancer prognosis and the tumor immune microenvironment, and to construct a predictive model to aid in prognosis assessment and personalized treatment. Method/Process Based on oxidative stress-related gene sets, an integrated machine learning algorithm is employed to screen for the optimal prognostic model, which is subsequently validated in independent cohorts. A comprehensive predictive model is established by combining survival analysis and multivariate Cox regression. Gene set enrichment analysis (GSEA), single-cell RNA sequencing (scRNA-seq), and tumor microenvironment analysis are utilized to compare pathway enrichment, immune cell infiltration, and immunotherapy response between high-risk and low-risk groups. Result/Conclusion A prognostic model comprising 14 genes is constructed, demonstrating that patients in the high-risk group have a significantly shorter overall survival. A nomogram integrating the risk score and clinical features has excellent predictive performance. The model demonstrates strong predictive capability and potential for clinical translation.

    参考文献
    相似文献
    引证文献
引用本文

陈晓龙,冯振宁,唐永君,等.基于机器学习的乳腺癌氧化应激预后模型及肿瘤微环境分析[J].医学信息学杂志,2025,46(11):58-66

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2025-10-12
  • 录用日期:
  • 在线发布日期: 2025-12-15
  • 出版日期:

扫码关注

官方微信