基于多组学数据融合挖掘的药物重定位研究
作者:
作者单位:

(中国医科大学健康管理学院 沈阳 110122)

作者简介:

袁菁,硕士研究生;通信作者:侯跃芳,教授,硕士生导师。

通讯作者:

中图分类号:

R-058

基金项目:

辽宁省教育厅高校基本科研项目(项目编号:LJ112410159061)。


Study on Drug Repositioning Based on Multi-omics Data Mining
Author:
Affiliation:

(School of Health Management, China Medical University, Shenyang 110122, China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 构建多组学数据融合挖掘框架,开展疾病药物重定位研究,为药物研发提供依据。方法/过程 从多组学数据库检索抽取疾病遗传变异、代谢物、蛋白质及表观遗传变化信息,融合挖掘处理后得到疾病相关蛋白质,构建并分析蛋白质相互作用网络。基于加权求和模型计算靶点优先级,再依据优选靶蛋白筛选药物。以阿尔茨海默病(Alzheimer’s disease,AD)为例,预测潜在抗AD药物。结果/结论 构建了多组学数据融合挖掘框架,实证研究得到556种AD相关蛋白质,并筛选出两种抗AD靶蛋白及其相关药物。

    Abstract:

    Purpose/Significance To build a multi-omics data fusion and mining framework, and to conduct research on drug repositioning for diseases, so as to provide a basis for drug development. Method/Process Genetic variations, metabolites, proteins and epigenetic changes related to diseases are retrieved and extracted from multi-omics databases. After fusion, mining and processing, disease-related proteins are obtained. A protein interaction network is constructed and analyzed. The target priority is calculated using a weighted sum model, and drugs are selected based on the preferred target proteins. Taking Alzheimer’s disease (AD) as an example, potential anti-AD drugs are predicted. Result/Conclusion A multi-omics data fusion and mining framework is constructed. Through an empirical research, a total of 556 AD-related proteins are obtained, and two anti-AD target proteins and their related drugs are screened out.

    参考文献
    相似文献
    引证文献
引用本文

袁菁,侯跃芳,韩玙蔓,等.基于多组学数据融合挖掘的药物重定位研究[J].医学信息学杂志,2025,46(11):67-73

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2025-11-04
  • 录用日期:
  • 在线发布日期: 2025-12-15
  • 出版日期:

扫码关注

官方微信