支持向量机基础上的银屑病辅助诊断方法研究
作者:
中图分类号:

R-056

基金项目:

国家社会科学基金重点项目“网络健康信息资源聚合与精准信息服务研究”(项目编号:17AZD037);国家重点研发计划“中医智能舌诊系统及数据平台研发与应用”(项目编号:2017YFC1703306);湖南省自然科学基金青年项目“无线传感网中基于压缩感知的数据收集关键技术研究”(项目编号:2019JJ50453);湖南省自然科学基金面上项目“基于‘法-方-药’网络机器学习的中医治疗银屑病复方功效预测研究”(项目编号:2018JJ2301);湖南省科技厅重点项目“基于大数据的中西医结合防治脑梗死创新技术研究与推广应用”(项目编号:2017SK2111);湖南中医药大学开放基金项目"面向动态蛋白质网络的功能模块挖掘方法研究"(项目编号:2018JK02)。


Study on the Assistant Diagnosis Method of Psoriasis Based on Support Vector Machine
Author:
  • 摘要
  • 访问统计
  • 参考文献 [11]
  • 相似文献 [20]
  • 文章评论
    摘要:

    介绍基于支持向量机的银屑病辅助诊断方法实现流程,包括数据收集和预处理、构建数据库群、特征提取、建立基于支持向量机的辅助诊断模型。通过实验验证该方法的有效性,其诊断精度较高,可以为银屑病数据分析、疾病预防提供技术支持。

    Abstract:

    The paper introduces the realization process of the assistant diagnosis method of Psoriasis(PS) based on Support Vector Machine (SVM), including data collection and preprocessing, data base construction, feature extraction, and the building of assistant diagnosis model based on SVM. The effectiveness of the method is verified by experiments. The diagnosis accuracy of the method is relatively high, which can provide technical support for data analysis and disease prevention of psoriasis.

    参考文献
    1 Blome C, Costanzo A, Dauden E, et al. Patient-relevant Needs and Treatment Goals in Nail Psoriasis[J]. Quality of Life Research, 2016, 25(5): 1179-1188.
    2 Reich K, Hartl C, Gambichler T, et al. Retrospective Data Collection of Psoriasis Treatment with Fumaric Acid Esters in Children and Adolescents in Germany (KIDS FUTURE Study)[J].JDDG:Journal der Deutschen Dermatologischen Gesellschaft, 2016, 14(1): 50-57.
    3 胡满满, 陈旭, 孙毓忠, 等. 基于动态采样和迁移学习的疾病预测模型[J]. 计算机学报, 2019,42(10): 2339-2354.
    4 Gu B, Quan X, Gu Y, et al. Chunk Incremental Learning for Cost-sensitive Hinge Loss Support Vector Machine[J]. Pattern Recognition, 2018(83): 196-208.
    5 姜慧勇, 娄冬华. 临床试验既往病史、不良事件和合并用药数据清理的方法[J]. 南京医科大学学报(自然科学版), 2018, 38(10):1463-1466.
    6 Tariq H, Al-Sahaf H, Welch I. Modelling and Prediction of Resource Utilization of Hadoop Clusters: a machine learning approach[C]. Paris: Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing, 2019: 93-100.
    7 Nath R P D, Hose K, Pedersen T B, et al. SETL: a programmable semantic extract-transform-load framework for semantic data warehouses[J]. Information Systems, 2017(68): 17-43.
    8 Rodríguez P, Bautista M A, Gonzalez J, et al. Beyond One-hot Encoding: lower dimensional target embedding[J]. Image and Vision Computing, 2018(75): 21-31.
    9 Tam H H M, Tuan H D, Ngo D T. Successive Convex Quadratic Programming for Quality-of-service Management in Full-duplex MU-MIMO Multicell Networks[J]. IEEE Transactions on Communications, 2016, 64(6): 2340-2353.
    10 Van Tuyen N, Yao J C, Wen C F. A Note on Approximate Karush–Kuhn–Tucker Conditions in Locally Lipschitz Multiobjective Optimization[J]. Optimization Letters, 2019, 13(1): 163-174.
    11 Chen L, Chu C, Feng K. Predicting the Types of Metabolic Pathway of Compounds Using Molecular Fragments and Sequential Minimal Optimization[J]. Combinatorial Chemistry & High Throughput Screening, 2016, 19(2): 136-143.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李鹏,闵慧,罗爱静.支持向量机基础上的银屑病辅助诊断方法研究[J].医学信息学杂志,2020,41(9):37-41

复制
分享
文章指标
  • 点击次数:837
  • 下载次数: 1720
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-05-25
  • 在线发布日期: 2020-10-12

扫码关注

官方微信