基于无监督深度学习的电子健康档案数据挖掘技术研究进展
作者:
作者单位:

(中国医学科学院/北京协和医学院医学信息研究所 北京 100020)

中图分类号:

R-058

基金项目:

北京市自然科学基金重点项目(项目编号:Z200016);中国医学科学院医学与健康科技创新工程“医学人工智能算法评价标准库构建”(项目编号:2018-I2M-AI-016)。


Research Progress of Electronic Health Record Data Mining Based on Unsupervised Deep Learning
Author:
Affiliation:

Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China

  • 摘要
  • 访问统计
  • 参考文献 [1]
  • 相似文献
  • 文章评论
    摘要:

    介绍自编码器、生成式对抗网络、BERT等无监督深度学习方法,阐述其在电子健康档案数据挖掘中的应用以及存在的挑战,指出无监督深度学习技术能够加速医疗知识发现和临床决策支持,促进个性化医学发展。

    Abstract:

    The paper introduces unsupervised deep learning methods such as autoencoder, Generative Adversarial Network (GAN) and BERT and their applications and challenges in Electronic Health Record (EHR) data mining, and points out that unsupervised deep learning technology improves the efficiency of medical knowledge discovery and clinical decision support and promotes the development of personalized medicine.

    参考文献
    1 Kim E, Rubinstein S M, Nead K T, et al.The Evolving Use of Electronic Health Records (EHR) for Research[J].Seminars in Radiation Oncology,2019,29 (4):354-361.2 任冠华.电子健康档案概念解析及标准化现状分析[J].医学信息学杂志,2015,36 (1):14-18.3 Shickel B, Tighe P J, Bihorac A, et al.Deep EHR:A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis[J].IEEE Journal of Biomedical and Health Informatics,2018,22 (5):1589-1604.4 张宇, 李姣.电子健康档案数据挖掘与整合技术新进展[J].中国数字医学,2017,12 (9):41-44.5 Jensen P B, Jensen L J, Brunak S.Mining Electronic Health Records:Towards Better Research Applications and Clinical Care[ J].Nature Reviews.Genetics,2012, 13 (6): 395-405.6 Arslan T S, Akilotu B, Toraman S.A Deep Learning-based Decision Support System for Diagnosis of OSAS Using PTT Signals[J].Med Hypotheses,2019(127):15-22.7 Landi I, Glicksberg B S, Lee H C, et al.Deep Representation Learning of Electronic Health Records to Unlock Patient Stratification at Scale[J].NPJ Digital Medicine,2020(3):96.8 Cocos A, Fiks A G, Masino A J.Deep Learning for Pharmacovigilance:Recurrent Neural Network Architectures for Labeling Adverse Drug Reactions in Twitter Posts[J].J Am Med Inform Assoc,2017,24 (4):813-821.9 Li F.Fine-Tuning Bidirectional Encoder Representations From Transformers (BERT)-Based Models on Large- Scale Electronic Health Record Notes:An Empirical Study[J].Jmir Medical Informatics,2019, 7 (3):e14830.10 Miotto R, Li L, Kidd B A, et al.Deep Patient:An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records[J].Sci Rep,2016(6):26094.11 Huang Z, Dong W, Duan H, et al.A Regularized Deep Learning Approach for Clinical Risk Prediction of Acute Coronary Syndrome Using Electronic Health Records[J].IEEE Trans Biomed Eng,2018,65 (5):956-968.12 Goodfellow I, Pouget-Abadie J, Mirza M, et al.Generative Adversarial Nets[C].Montreal:Advances in Neural Information Processing Systems,2014:2672-2680.13 Salimans T, Goodfellow I, Zaremba W, et al.Improved Techniques for Training Gans[J].Advances in Neural Information Processing Systems,2016(29):2234-2242.14 Dong H, Neekhara P, Wu C, et al.Unsupervised Image-to-Image Translation with Generative Adversarial Networks[EB/OL].[2021-05-01].https://arxiv.org/pdf/1701.02676.pdf.15 Zheng C, Cham T-J, Cai J.Pluralistic Image Completion[C].Long Beach:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:1438-1447.16 Zhang Y, Gan Z, Carin L.Generating Text via Adversarial Training[C].Barcelona:NIPS Workshop on Adversarial Training,2016(12):21-32.17 Yoon J, Drumright L N, Van Der SchaarM.Anonymization Through Data Synthesis Using Generative Adversarial Networks (ADS-GAN)[J].IEEE J Biomed Health Inform,2020,24 (8):2378-2388.18 Dongha Lee.Generating Sequential Electronic Health Records Using Dual Adversarial Autoencoder[J].Journal of the American Medical Informatics Association,2020, 27 (9): 1411-1419.19 Choi E, Biswal S, Malin B, et al.Generating multi-label discrete patient records using generative adversarial networks[C].Ann Arbor, Michigan:Machine Learning for Healthcare Conference, PMLR, 2017:286-305.20 Baowaly M K, Lin C C, Liu C L, et al.Synthesizing Electronic Health Records Using Improved Generative Adversarial Networks[J].Journal of the American Medical Informatics Association: JAMIA,2019,26 (3):228-241.21 Devlin J, Chang M-W, Lee K, et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C].Minneapolis:Proceedings of NAACL-HLT, 2019:4171-4186.22 Vaswani A, Shazeer N, Parmar N, et al.Attention is All You Need[J].Advances in Neural Information Processing Systems,2017(30):5998-6008.23 Li F, Jin Y, Liu W, et al.Fine-Tuning Bidirectional Encoder Representations From Transformers (BERT)-Based Models on Large-Scale Electronic Health Record Notes:An Empirical Study[J].JMIR Med Inform,2019,7 (3):e14830.24 Darabi S, Kachuee M, Fazeli S, et al.TAPER:Time-Aware Patient EHR Representation[J].IEEE J Biomed Health Inform,2020,24 (11):3268-3275.25 Mahajan D, Poddar A, Liang J J, et al.Identification of Semantically Similar Sentences in Clinical Notes:Iterative Intermediate Training Using Multi-Task Learning[J].JMIR Med Inform,2020,8 (11):e22508.26 Wang L, Wang Q, Bai H, et al.EHR2Vec:Representation Learning of Medical Concepts From Temporal Patterns of Clinical Notes Based on Self-Attention Mechanism[J].Front Genet,2020(11):630.27 Li R, Hu B, Liu F, et al.Detection of Bleeding Events in Electronic Health Record Notes Using Convolutional Neural Network Models Enhanced With Recurrent Neural Network Autoencoders:Deep Learning Approach[J].JMIR Med Inform,2019,7 (1):e10788.28 Ruan T, Lei L, Zhou Y, et al.Representation Learning for Clinical Time Series Prediction Tasks in Electronic Health Records[J].BMC Med Inform Decis Mak,2019,19 (Suppl 8):259.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

顾耀文,李姣.基于无监督深度学习的电子健康档案数据挖掘技术研究进展[J].医学信息学杂志,2022,43(1):34-40

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2022-03-09

扫码关注

官方微信