鼻咽癌放疗后大出血风险机器学习预测模型构建
作者:
作者单位:

(郑州大学第一附属医院 郑州 450008)

作者简介:

葛晓伟,硕士,工程师,发表论文9篇;通信作者:程铭,博士,高级工程师,硕士生导师。

通讯作者:

中图分类号:

R-058

基金项目:

河南省重点研发与推广专项(科技攻关)项目(项目编号:222102210112);河南省医学科技攻关计划软科学项目(项目编号:RKX202202021)。


Construction of a Machine Learning Prediction Model for the Risk of Massive Hemorrhage After Radiotherapy for Nasopharyngeal Carcinoma
Author:
Affiliation:

(The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450008, China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 构建鼻咽癌放疗后大出血风险预测模型,并评价其预测效能。方法/过程 选取郑州大学第一附属医院2016—2019年鼻咽癌放疗后大出血的住院患者为研究对象,随机选取同等数量未出现大出血的患者为对照组,收集两组患者的病历指标数据,分别应用多种机器学习算法并选取最优算法构建模型。结果/结论 基于支持向量机算法的模型召回率为0.94、F1值为0.93、精确度为0.93,效果最好,可用于构建鼻咽癌放疗后大出血预测模型,为患者提供更精确的个体化预测,具有良好的临床应用前景。

    Abstract:

    Purpose/Significance To construct a risk prediction model for postoperative massive bleeding in nasopharyngeal carcinoma after radiotherapy, and to evaluate its predictive performance. Method/Process Inpatients with major bleeding after radiotherapy for nasopharyngeal cancer in the First Affiliated Hospital of Zhengzhou University from 2016 to 2019 are selected as the study objects, and the same number of patients without major bleeding are randomly selected as the control group. The medical record index data of the two groups of patients are collected, and various machine learning algorithms are applied respectively and the optimal algorithm is selected to build the model. Result/Conclusion The model based on support vector machine (SVM) algorithm has a recall rate of 0.94, an F1 value of 0.93, and a precision of 0.93, showing the best performance. It can be used to construct a prediction model for postoperative massive bleeding in nasopharyngeal carcinoma, and provide more accurate personalized prediction for patients, which has good clinical application prospects.

    参考文献
    相似文献
    引证文献
引用本文

葛晓伟,李星丹,张伟祎,等.鼻咽癌放疗后大出血风险机器学习预测模型构建[J].医学信息学杂志,2024,45(7):88-92

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2024-02-28
  • 录用日期:
  • 在线发布日期: 2024-08-15
  • 出版日期:

扫码关注

官方微信