基于BERT和双通道语义协同的在线医疗评论情感分析
作者:
作者单位:

(同济大学经济与管理学院 上海 200092)

作者简介:

张雯,硕士研究生;通信作者:张建同,博士。〔基金项目〕 国家自然科学基金面上项目(项目编号:72371188)。

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目(项目编号:72371188)。


Sentiment Analysis of Online Medical Reviews Based on BERT and Semantics Collaboration through Dual-channel
Author:
Affiliation:

(School of Economics and Management, Tongji University, Shanghai 200092, China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 利用人工智能技术从海量评论中迅速甄别负面评论,了解患者的需求与不满,推动远程医疗的可持续发展。方法/过程 以好大夫在线网站的评论数据为例,首先使用双向编码器表征(bidirectional encoder representations from transformers,BERT)模型生成词向量,随后将其输入卷积神经网络(convolutional neural network,CNN)与双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)构成的双通道模型,最后通过特征融合策略获取文本情感信息,完成二分类任务。结果/结论 该双通道模型能够较好地融合BiLSTM与CNN的优势,与BERT、BERT_BiLSTM、BERT_CNN等9种模型相比,分类准确率、宏F1分数最高,在在线医疗评论文本情感分类任务中具有有效性。

    Abstract:

    Purpose/Significance To use artificial intelligence (AI) technology to quickly screen negative comments from a large number of reviews, so as to understand the needs and grievances of patients, and promote the sustainable development of telemedicine. Method/Process Taking comments from Haodf.com as an example, the paper first uses bidirectional encoder representations from transformers (BERT) to generate word embeddings, which are then fed into a convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM) network in a dual-channel manner. Finally, a feature fusion strategy is employed to obtain textual sentiment information to achieve a binary classification task. Result/Conclusion The proposed dual-channel model based on BERT can better integrate the advantages of CNN and BiLSTM. It achieves the highest classification accuracy and macro F1-score compared to other 9 models, including BERT, BERT_BiLSTM, BERT_CNN, etc., which is effective in sentiment classification tasks for online medical reviews.

    参考文献
    相似文献
    引证文献
引用本文

张雯,张建同,郭雨姗.基于BERT和双通道语义协同的在线医疗评论情感分析[J].医学信息学杂志,2024,45(11):30-35

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2024-06-17
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:

扫码关注

官方微信