居家护理场景下用户护理需求命名实体识别研究
作者:
作者单位:

(1.中国人民大学信息学院 北京 100872;2.华南师范大学阿伯丁人工智能与数据科学学院 广州 510631)

作者简介:

张卓越,博士研究生,发表论文2篇;通信作者:左美云,教授,博士生导师。

通讯作者:

中图分类号:

基金项目:

国家社会科学基金重大项目(项目编号:22&ZD328)。


Study on Named Entity Recognition of User Care Needs in Home Healthcare Scenarios
Author:
Affiliation:

(1.School of Information, Renmin University of China, Beijing 100872, China;2.Aberdeen School of Artificial Intelligence and Data Science, South China Normal University, Guangzhou 510631, China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 探讨应用深度学习模型在居家护理场景识别用户需求文本中的护理需求实体,以期通过自动化手段精准识别用户需求,为提升居家护理服务的效率和质量提供技术支持。方法/过程 选取560条用户护理需求文本客观数据,基于《国际功能、残疾和健康分类》对文本中的护理需求实体进行分类标注,采用BERT-BiLSTM-CRF模型进行实体识别,通过消融实验验证模型效果,分析实验结果,评估模型性能。结果/结论 BERT-BiLSTM-CRF模型实体级别微平均准确率、召回率、F1值分别为0.752 9、0.775 8、0.764 2,表明该模型可以为居家护理场景下自动化挖掘用户需求、优化护理服务流程和提高护理质量提供有力支持。

    Abstract:

    Purpose/Significance To explore deep learning models can identify care needs entities in user needs texts in home healthcare scenarios, so as to accurately identify user needs through automated means to provide technical support for improving the efficiency and quality of home care services. Method/Process 560 pieces of objective data of user care needs are selected to classify and label the care needs entities in the texts based on the International Classification of Functioning, Disability and Health. The BERT-BiLSTM-CRF model is used to perform the entity recognition task. The effect of the model is verified by the ablation experiment, the experimental results are analyzed, and the performance of the model is evaluated. Result/Conclusion The model’s precision, recall, and F1-score at the entity-level micro-average are 0.752 9,0.775 8, and 0.764 2, respectively, indicating that the model can provide strong support for automatic mining of user needs, optimization of care service process and improvement of care quality in home healthcare scenarios.

    参考文献
    相似文献
    引证文献
引用本文

张卓越,杨天赋,左美云.居家护理场景下用户护理需求命名实体识别研究[J].医学信息学杂志,2024,45(12):75-80

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2024-06-08
  • 录用日期:
  • 在线发布日期: 2025-01-10
  • 出版日期:

扫码关注

官方微信