人工智能在医疗健康领域的创新应用、风险挑战与治理对策
作者:
作者单位:

(1.北京师范大学互联网发展研究院 北京 100875;2.北京师范大学国家数字健康中心 北京;3.北京师范大学新闻传播学院 北京 100875;4.北京理工大学北理鲍曼联合学院 北京 100875;5.北京师范大学中国社会管理研究院 北京 100875)

作者简介:

李韬,教授,博士生导师,发表论文50余篇;通信作者:冯贺霞。


Innovative Applications, Risk Challenges and Governance Countermeasures of Artificial Intelligence in the Field of Healthcare
Author:
Affiliation:

(1.Internet Institute, Beijing Normal University, Beijing 100875,China;2.National Health Center of China, Beijing Normal University, Beijing 100875,China;3.School of Journalism and Communication, Beijing Normal University, Beijing 100875, China;4.BIT-BMSTU Joint School, Beijing Institute of Technology, Beijing 100875, China;5.China Academy of Social Management, Beijing Normal University, Beijing 100875, China)

  • 摘要
  • 访问统计
  • 参考文献 [1]
  • 相似文献 [20]
  • 文章评论
    摘要:

    目的/意义 为充分发挥人工智能技术优势,释放医疗健康数据价值,促进医疗健康事业和产业高质量发展提供参考依据。方法/过程 分析人工智能在卫生服务、医疗服务、健康管理与药物研发等领域的创新应用,以及人工智能应用于医疗健康领域面临的数据隐私与安全、算法偏差、法律与监管、技术可靠性、伦理等方面的风险挑战。结果/结论 应建立健全数据保护体系、提升技术可靠性与公平性、构建全球协同的多层次监管框架、促进技术发展与人文关怀平衡,以确保医疗领域人工智能创新应用的安全性、有效性和可持续性。

    Abstract:

    Purpose/Significance To provide references for fully leveraging the advantages of artificial intelligence technology, unlocking the value of medical and health data, and promoting high-quality development of the medical and health industry. Method/Process The paper analyzes the innovative applications of artificial intelligence in health services, medical services, health management, and drug development, as well as the risks and challenges faced by the application of artificial intelligence in the field of healthcare, including data privacy and security, algorithm bias, legal and regulatory issues, technical reliability and ethics, etc. Result/Conclusion It is suggested that we should establish a sound data protection system, enhance technological reliability and fairness, build a global collaborative multi-level regulatory framework, promote a balance between technological development and humanistic concern, in order to ensure the safety, effectiveness, and sustainability of artificial intelligence innovation applications in the medical field.

    参考文献
    1 World Health Organization.Global strategy on digital health 2020—2025 [R/OL].[2024-09-13].https://iris.who.int/handle/10665/344249.2 World Bank.Digital-in-health:unlocking the value for everyone[R/OL].[2024-09-13].https://www.worldba-nk.org/en/topic/health/publication/digital-in-health-unlocking-the-value-for-everyone.3 HAUG C J, DRAZEN J M.Artificial intelligence and machine learning in clinical medicine, 2023[J].New England journal of medicine, 2023,388(13):1201-1208.4 BRESNICK J.Big data, artificial intelligence, IoT may change healthcare in 2017[EB/OL].[2025-01-03].https://healthitanalytics.com/news/big-data-artificial-intelligence-iotmay-change-healthcare-in-2017.5 PLACIDO D, YUAN B, HJALTELIN J X, et al.A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories[J].Nature medicine, 2023,29(5):1113-1122.6 KHINVASARA T, TZENIOS N, SHANKER A.Post-market surveillance of medical devices using AI[J].Journal of complementary and alternative medical research, 2024,25(7):108-122.7 BOHR A, MEMARZADEH K.The rise of artificial intelligence in healthcare applications[M].London:Academic Press,2020.8 SIWICKI B.IEEE deep dive:what you really need to know about AI and cybersecurity[EB/OL].[2024-09-13].https://www.healthcareitnews.com/news/ieee-deep-dive-what-you-really-need-know-about-ai-and-cybersecurity.9 Reuters.100 million people involved in UnitedHealth hack[EB/OL].[2024-11-23].https://www.inc.com/reuters/100-million-people-involved-in-unitedhealth-hack/90994701.10 REDDY S.Explainability and artificial intelligence in medicine[J].The lancet digital health, 2022,4(4):e214-e215.11 ESMAEILZADEH P.Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices:a perspective for healthcare organizations[J].Artificial intelligence in medicine, 2024,151(5):102861.12 European Medicines Agency.Medical devices [EB/OL].[2024-07-23].https://www.ema.europa.eu/en/human-regulatory-overview/medical-devices.13 European Medicines Agency.Artificial intelligence workplan to guide use of AI in medicines regulation [EB/OL].[2024-07-23].https://www.ema.europa.eu/en/news/artificial-intelligence-workplan-guide-use-ai-medicines-regulation.14 BJERRING J C, BUSCH J.Artificial Intelligence and Patient-Centered Decision-Making[EB/OL].[2024-07-23].https://doi.org/10.1007/s13347-019-00391-6.15 CELI L A, CELLINI J, CHARPIGNON M L, et al.Sources of bias in artificial intelligence that perpetuate healthcare disparities—a global review[EB/OL].[2024-07-23].https://doi.org/10.1371/journal.pdig.0000022.16 National Institutes of Health.All of us research program[EB/OL].[2024-07-23].https://allofus.nih.gov/.17 EHDEN.European health data evidence network[EB/OL].[2024-07-23].https://www.ehden.eu/.18 IBM.什么是《欧盟人工智能法案》[EB/OL].[2024-07-23].https://www.ibm.com/cn-zh/topics/eu-ai-act.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李韬,张珺,李亚哲,等.人工智能在医疗健康领域的创新应用、风险挑战与治理对策[J].医学信息学杂志,2025,46(1):2-8, 16

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 最后修改日期:2025-01-17
  • 在线发布日期: 2025-02-12

扫码关注

官方微信