基于大语言模型微调的出院小结生成“幻觉”抑制方法
作者:
作者单位:

(1.上海交通大学医学院附属瑞金医院 上海 200025;2.华东理工大学 上海 200237)

作者简介:

姜胜耀,工程师,发表论文8篇;通信作者:李寅驰。

通讯作者:

中图分类号:

R-058

基金项目:

上海市卫生和健康发展研究中心横向课题医学人工智能场景应用案例研究与社会实验调研。


Hallucination Suppression Methods for Discharge Summary Generation Based on Large Language Model Fine-tuning
Author:
Affiliation:

(1.Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025,China;2.East China University of Science and Technology, Shanghai 200237,China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 解决大语言模型在出院小结生成过程中存在的“幻觉”问题,提升大语言模型的生成能力与上下文一致性。方法/过程 构建高质量、多层次的医疗指令数据集,采用基于分阶段训练的指令微调策略,引导大语言模型从简单到复杂任务逐步学习。在微调过程中引入数据回放与混合训练机制,确保大语言模型在新任务中保留和利用已有知识。结果/结论 该方法显著降低了大语言模型生成“幻觉”的发生率,提高了医疗文本生成准确性和可靠性。将课程学习理论与回放机制有效结合,不仅提升了模型对复杂任务的适应性,还确保了生成内容的专业性,同时展现出较高的实用性和可靠性。

    Abstract:

    Purpose/Significance To address the hallucination problem in discharge summary generation by using large language models, and to enhance the generative ability and contextual consistency of large language models. Method/Process The study constructs a high-quality, multi-level medical instruction dataset and employs a staged training-based instruction fine-tuning strategy to guide the model in learning tasks from simple to complex. A data replay and mixed training mechanism is introduced during the fine-tuning process to ensure that the large language model retains and utilizes existing knowledge when tackling new tasks. Result/Conclusion Experimental results show that the method proposed in this paper significantly reduces the occurrence of hallucinations in large language model generation and improves the accuracy and reliability of medical text generation. The superiority of this method lies in the effective integration of curriculum learning theory and the replay mechanism, which not only enhances the model’s adaptability to complex tasks, but also ensures the professionalism of the generated content, while showing high practicality and reliability.

    参考文献
    相似文献
    引证文献
引用本文

姜胜耀,袁铖,朱立峰,等.基于大语言模型微调的出院小结生成“幻觉”抑制方法[J].医学信息学杂志,2025,46(2):14-21, 35

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2025-01-29
  • 录用日期:
  • 在线发布日期: 2025-03-07
  • 出版日期:

扫码关注

官方微信