基于循证医学和电子病历数据的通用医学知识图谱构建
作者:
作者单位:

(1.中国人民解放军总医院医学创新研究部 北京 100853;2.医疗大数据应用技术国家工程研究中心 北京100853;3.北京嘉和海森健康科技有限公司 北京 100085)

作者简介:

吴欢,工程师,发表论文20篇;通信作者:何昆仑,博士,教授。

通讯作者:

中图分类号:

基金项目:

科技创新2030——“新一代人工智能”重大项目(项目编号:2021ZD0140406);北京市自然科学基金-海淀原始创新联合基金资助项目(项目编号:L222006)。


Construction of a General Medical Knowledge Graph Based on Evidence-based Medicine and Electronic Medical Record Data
Author:
Affiliation:

(1.Medical Innovation Research Department of Chinese PLA General Hospital, Beijing 100853, China;2.National Engineering Research Center of Medical Big Data Application Technology, Beijing 100853, China;3.Goodwill Hessian Health Technology Co. Ltd., Beijing 100085, China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 构建涵盖循证医学知识和电子病历数据的通用医学知识图谱,以提升图谱的应用效能。方法/过程 梳理多源异构数据情况,融合国内外知名知识图谱,设计图谱schema。利用RoBERTa预训练模型进行词嵌入,从医学文献、网络文献、教科书、医学数据库和电子病历等数据源中提取命名实体和关系,采用基于规则的SWIQA框架和基于随机抽样的人工审核策略评价图谱质量。结果/结论 共确定128个本体和1 108种关系,并以三元组形式存储于数据库中。经评估,图谱语义准确性达93.8%。所构建的通用医学知识图谱不仅涵盖循证医学知识,还包括临床真实世界产生的专家经验,为医学人工智能应用的进一步发展提供了有力支撑。

    Abstract:

    Purpose/Significance To construct a general medical knowledge graph covering evidence-based medical knowledge and electronic medical record (EMR) data, so as to improve the application effect of the graph. Method/Process The multi-source heterogeneous data are sorted out, the well-known knowledge graphs at home and abroad are integrated, the schema of the graphs is designed. The word embedding of RoBERTa pre-trained model is used to extract entities and relationships from medical literatures, network literatures, textbooks, medical databases and EMRs. The rule-based SWIQA framework and the manual audit strategy based on random sampling are used to evaluate the quality of the graph.Result/Conclusion A total of 128 ontologies and 1 108 relationships are identified and stored in the database in the form of triples. The semantic accuracy of the atlas is 93.8% by evaluation. The general medical knowledge graph not only covers evidence-based medical knowledge, but also includes expert experience generated in the clinical real world, which can provide support for the further development of medical AI applications.

    参考文献
    相似文献
    引证文献
引用本文

吴欢,车贺宾,王万玲,等.基于循证医学和电子病历数据的通用医学知识图谱构建[J].医学信息学杂志,2025,46(2):22-28

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2024-08-05
  • 录用日期:
  • 在线发布日期: 2025-03-07
  • 出版日期:

扫码关注

官方微信