基于超声及钼靶检查报告的乳腺癌知识图谱构建
作者:
作者单位:

(1.成都大学电子信息与电气工程学院 成都 610106;2.电子科技大学附属医院/四川省人民医院老年科 成都 610072)

作者简介:

胡林,博士,讲师,发表论文10余篇;通信作者:杜雪蓓。〔基金项目〕 国家自然科学基金资助项目(项目编号:82301771);医学数字影像与通讯(DICOM)标准国家地方联合工程实验室开放基金资助项目(项目编号:KFKT2024002)。

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(项目编号:82301771);医学数字影像与通讯(DICOM)标准国家地方联合工程实验室开放基金资助项目(项目编号:KFKT2024002)。


Construction of a Knowledge Graph for Breast Cancer Based on Ultrasound and Mammography Reports
Author:
Affiliation:

(1.Department of Electronic Information and Electrical Engineering, Chengdu University, Chengdu 610106, China;2.Department of Geriatric, Affiliated Hospital of University of Electronic Science and Technology/Sichuan Provincial People〖DK〗’s Hospital, Chengdu 610072, China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 提取乳腺超声及钼靶检查报告中的特征信息,构建乳腺癌知识图谱,促进乳腺癌诊疗数据的智能化管理,为乳腺癌临床决策支持系统开发奠定基础。方法/过程 结合乳腺癌诊疗指南、临床专家经验构建知识图谱本体及概念层;基于RoBERTa模型和Global Pointer进行实体关系联合抽取,形成数据层;选用Neo4j存储知识图谱。选取多种传统串联式实体关系抽取模型进行对比实验,评估模型性能。结果/结论 基于该乳腺癌知识图谱的模型准确率、召回率及F1值均高于95%,优于对比模型。

    Abstract:

    Purpose/Significance To extract the characteristic information of breast ultrasound and mammography reports, and to construct a knowledge graph for breast cancer, so as to promote the intelligent management of breast cancer diagnosis and treatment data, and lay a foundation for the development of clinical decision support system (CDSS) for breast cancer. Method/Process By combining breast cancer diagnosis and treatment guidelines with clinical expert experience, the breast cancer knowledge graph ontology and conceptual layer are constructed. Then, the entity and relationship joint extraction is performed resorting to a RoBERTa model and Global Pointer so as to form the data layer. Finally, Neo4j is adopted to store the constructed knowledge graph. A variety of traditional serial entity relation extraction models are selected for comparative experiments to evaluate the performance of the models. Result/Conclusion The accuracy rate, the recall rate, and the F1 value of the model based on the breast cancer knowledge graph exceed 95%, outperforming the comparison models.

    参考文献
    相似文献
    引证文献
引用本文

胡林,杜雪蓓,范真,等.基于超声及钼靶检查报告的乳腺癌知识图谱构建[J].医学信息学杂志,2025,46(4):57-63

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2024-10-15
  • 录用日期:
  • 在线发布日期: 2025-05-20
  • 出版日期:

扫码关注

官方微信