基于人工智能的健康医学数据平台建设与深度治理
作者:
作者单位:

(1.中国医学科学院北京协和医院信息中心 北京 100730;2.中国医学科学院北京协和医院健康医学部 北京 100730;3.中国医学科学院北京协和医院院办公室 北京 100730)

作者简介:

曾可,助理研究员,发表论文8篇;通信作者:张锋。〔基金项目〕 中央高水平医院临床科研业务费资助项目(项目编号:2022-PUMCH-B-032)。

通讯作者:

中图分类号:

基金项目:

中央高水平医院临床科研业务费资助项目(项目编号:2022-PUMCH-B-032)。


Construction and In-depth Governance of a Health and Medical Data Platform Based on Artificial Intelligence
Author:
Affiliation:

(1.Department of Information Management, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China ;2.Department of Health Management, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;3.Department of Administrative Office, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 构建健康医学数据平台,实现数据快速筛选、高效管理和智能化提取,服务临床科研与患者健康管理,促进医疗健康大数据规范化应用。方法/过程 基于医院信息系统、临床数据中心等系统,整合提取健康体检数据,进行规范化治理和安全存储,建设标准化健康管理数据库;利用人工智能和大数据技术构建深度学习模型,实现健康医学数据的多维度检索和科研指标自动提取。结果/结论 数据平台已汇集31万余名体检患者的健康数据,完成肥胖、酒精代谢、医疗人员职业健康3大专病库构建,可支撑多场景应用,满足临床科研数据采集需求,为个性化健康管理服务奠定基础。

    Abstract:

    Purpose/Significance To construct a health and medical data platform to realize rapid data screening, efficient management and intelligent extraction, so as to serve clinical research and patient health management, and promote the standardized application of medical and health big data. Method/Process Based on hospital information system (HIS), clinical data repository (CDR) and other systems, the study integrates and extracts health examination data, conducts standardized management and safe storage, and constructs a standardized health management database. Artificial intelligence (AI) and big data technology are used to build deep learning models to realize multi-dimensional retrieval of health and medical data and automatic extraction of scientific research indicators. Result/Conclusion Through the data platform, health data from over 310 000 medical examination patients have been aggregated, and 3 specialized disease databases on obesity, alcohol metabolism, and occupational health of healthcare workers have been established, which can support multi-scenario applications, meet the needs of clinical scientific research data collection, and lay the foundation for personalized health management services.

    参考文献
    相似文献
    引证文献
引用本文

曾可,王谢,吴迪,等.基于人工智能的健康医学数据平台建设与深度治理[J].医学信息学杂志,2025,46(5):61-66

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2025-01-13
  • 录用日期:
  • 在线发布日期: 2025-06-13
  • 出版日期:

扫码关注

官方微信