基于多源知识图谱的疾病潜在药物发现研究
作者:
作者单位:

(1.中国医科大学健康管理学院 沈阳 110122;2.中国医学科学院/北京协和医学院医学信息研究所 北京 100020;3.大连医科大学附属第一医院 大连 116021)

作者简介:

陈星羽,硕士研究生;通信作者:侯跃芳,博士,教授,硕士生导师。〔基金项目〕 辽宁省教育厅高校基本科研项目(项目编号:LJ112410159061)。

通讯作者:

中图分类号:

R-058

基金项目:

辽宁省教育厅高校基本科研项目(项目编号:LJ112410159061)。


Study on Potential Drug Discovery for Diseases Based on Multi-source Knowledge Graphs
Author:
Affiliation:

(1.School of Health Management, China Medical University, Shenyang 110122, China;2.Institute of Medical Information, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing 100020, China;3.The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 构建多源知识图谱,提出基于知识图谱的药物发现方法,为疾病新药研发提供参考依据。方法/过程 设计知识图谱架构,优选7种异构数据库,经知识抽取、数据处理与清洗、知识融合构建知识图谱。基于图谱和SemMedDB建立推理规则及关联路径,改进加权链路预测方法,提出可用于药物发现的综合知识发现方法。结果/结论 以阿尔茨海默病为例,构建含67 780个实体、282 870个三元组的多源异构疾病知识图谱,预测潜在治疗药物184种。

    Abstract:

    Purpose/Significance To construct multi-source knowledge graphs, and to propose drug discovery methods based on knowledge graphs, so as to provide reference basis for the research and development of new drugs for diseases. Method/Process The architecture of the knowledge graph is designed, and seven heterogeneous databases are selected. The knowledge graph is constructed through knowledge extraction, data processing and cleaning, and knowledge fusion. Based on the graph and SemMedDB, inference rules and association paths are established, and the weighted link prediction method is improved. A comprehensive knowledge discovery method applicable to drug discovery is proposed. Result/Conclusion Taking Alzheimer’s disease as an example, a multi-source disease knowledge graph containing 67 780 entities and 282 870 triples is constructed, and 184 potential drugs are pvedicted.

    参考文献
    相似文献
    引证文献
引用本文

陈星羽,侯跃芳,赖书兰,等.基于多源知识图谱的疾病潜在药物发现研究[J].医学信息学杂志,2025,46(7):40-44, 52

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2025-05-13
  • 录用日期:
  • 在线发布日期: 2025-08-14
  • 出版日期:

扫码关注

官方微信