国内外人工智能素养测评工具综述
作者:
作者单位:

(中国医学科学院/北京协和医学院医学信息研究所/图书馆 北京 100020)

作者简介:

林燕,硕士研究生,发表论文1篇;通信作者:钱庆,研究员,博士生导师。

通讯作者:

中图分类号:

R-058

基金项目:

中国医学科学院医学与健康科技创新工程项目(项目编号:2021-I2M-1-057);国家重点研发计划(项目编号:2022YFC3601005);国家社会科学基金项目(项目编号:21BTQ069)。


A Systematic Review of Domestic and International Artificial Intelligence Literacy Assessment Tools
Author:
Affiliation:

(Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China)

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的/意义 综述国内外人工智能素养测评工具研究现状,为医学领域工具优化及实践应用提供循证支持。方法/过程 系统检索中国知网、万方数据、维普网、PubMed、Embase和Web of Science等数据库,筛选人工智能素养量表的原始研究文献,提取量表开发特征、维度框架及测量学属性数据,总结基本特征与维度演进,并基于健康测量工具选择的共识标准评估方法学及测量学属性质量,进而形成等级推荐。结果/结论 共纳入27项测评工具,内容分析表明,量表维度框架及内涵随时间和技术迭代演进,从技能导向转向综合素养导向;质量评估显示,部分量表存在属性验证不全面、内容效度证据不足等问题。未来应加强跨文化调适、长期跟踪研究及动态维度优化,以推动智能素养测评工具的全面发展,更好地服务于医学人工智能素养教育,实现精准评估。

    Abstract:

    Purpose/Significance To systematically review the research status of artificial intelligence (AI) literacy assessment tools domestically and internationally, providing evidence-based support for tool optimization and practical application. Method/Process The databases including CNKI, Wanfang, VIP, PubMed, Embase, and Web of Science are systematically searched to identify original development studies of AI literacy scales. Data on development features, dimensional framework, and measurement properties are extracted. Basic features and dimensional evolution are summarized, and methodological quality as well as measurement properties quality are evaluated based on the consensus-based standards for the selection of health measurement instruments (COSMIN) guidelines, followed by grading recommendations. Result/Conclusion A total of 27 assessment tools are included. Content analysis reveals that the dimensional frameworks and connotations of the scales evolves over time and technological advancements, shifting from skill-oriented to comprehensive literacy-oriented approaches. Quality assessment indicates that some scales lack comprehensive validation of properties or sufficient evidence for content validity. Future efforts should focus on cross-cultural adaptation, longitudinal tracking studies, and dynamic dimensional optimization to advance the comprehensive development of AI literacy assessment tools, better serve medical AI literacy education, and enable precise evaluation.

    参考文献
    相似文献
    引证文献
引用本文

林燕,孙海霞,蒲思樾,等.国内外人工智能素养测评工具综述[J].医学信息学杂志,2025,46(10):25-36

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2025-08-21
  • 录用日期:
  • 在线发布日期: 2025-11-12
  • 出版日期:

扫码关注

官方微信